Lecture 15. Truncation selection. Resemblance between relatives.

5.3 Truncation selection

Artificial selection aiming at a certain phenotypic value use a truncation point T for parent selection so that the offspring of selected parents have phenotypic distribution with a desired bias

To estimate heritability compare phenotypic mean values

 $\mu = \text{parent mean before selection}$

 μ_s = mean for selected parents

 μ' = mean for the offspring of selected parents

$$R/S$$
 = realized heritability

 $S = \mu_s - \mu$ selection differential

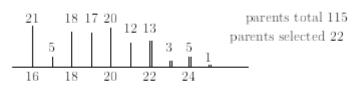
 $R = \mu' - \mu$ response to selection

Prediction equation: $R = Sh^2$ irrespective of T

Ex 7: seed weight

Fig 9.6, p. 409: edible beans of the genus Phaseolus P= weight of seed in mg, truncation point T=650 $\mu=403.5, \mu_s=691.7, \mu'=609.1, \frac{R}{S}=\frac{205.6}{288.2}=71.3\%$

Ex 8: drosophila bristles



Truncation selection with T=22

verify that
$$\mu = 19.304$$
, $\mu_s = 22.727$, $\mu' = 20.149$ realized heritability $h^2 = \frac{\mu' - \mu}{\mu_s - \mu} = \frac{0.845}{3.423} = 0.247$

Repeated truncation selection

Selection program over n generations with new truncation points changing in certain direction $\mu_0 \xrightarrow{T_0} \mu_{s0} \xrightarrow{h^2} \mu_1 \xrightarrow{T_1} \mu_{s1} \xrightarrow{h^2} \dots \mu_{n-1} \xrightarrow{T_{n-1}} \mu_{s(n-1)} \xrightarrow{h^2} \mu_n$ $S_0 = \mu_{s0} - \mu_0, R_0 = \mu_1 - \mu_0, R_0 = S_0 h^2$ $S_1 = \mu_{s1} - \mu_1, R_1 = \mu_2 - \mu_1, R_1 = S_1 h^2, \dots$ Total response to selection assuming constant h^2 $\mu_n - \mu_0 = R_0 + R_1 + \ldots + R_{n-1} = (S_0 + \ldots + S_{n-1})h^2$ cumulative selection differential $C_n = S_0 + \ldots + S_{n-1}$

Ex 9: body weight in mice

Fig 9.19, p. 445

body weight in mice plotted against C_t linearity supports the assumption of constant h^2 which is usally true for at least ten first generations

Ex 10: oil content in corn

Fig 9.4, p. 407: selection for high oil content in corn seeds over 76 generations, $\mu_0=4.8\%$, $\mu_{76}=18.8\%$ Given that C_t increased by 1.1% per generation estimate $h^2=\frac{18.8-4.8}{1.1\times76}=0.168$

5.4 Resemblance between relatives

Another characterisation of h^2 via comparison of

 P_o = male offspring's phenotypic values

 P_f = father's phenotypic values

Regression line

$$P_o = \mu_o + b(P_f - \mu_f)$$
 with the slope $b = \frac{\text{Cov}(P_o, P_f)}{\text{Var}(P_f)}$
Diallelic model neglecting the environmental component
 $\text{Cov}(P_o, P_f) = \text{E}(P_o \cdot P_f) - \mu^2 = pq\alpha^2 = \frac{1}{2}\sigma_a^2$
 $b = \frac{\sigma_a^2}{2\sigma_p^2} = \frac{h^2}{2}$

joint distribution	O = a	O = d	O = -a	total
$P = a$, A_1A_1	p^3	p^2q	0	p^2
$P = d$, A_1A_2	p^2q	pq	pq^2	2pq
$P = -a$, A_2A_2	0	pq^2	q^3	q^2
total	p^2	2pq	q^2	1

Offspring and midparent value

$$P_h = \frac{1}{2}(P_m + P_f)$$

 $Cov(P_o, P_h) = \frac{1}{2}\sigma_o^2$, $Var(P_h) = \frac{1}{2}\sigma_p^2$, $b = h^2$

Observed heritabilities

Fig 9.17-18, p. 438-9: animal and plant h^2 , human H^2 low heritabilities of fitness related traits

General covariance and slope

Table 9.7 p. 436: covariances between close relatives

$$\begin{aligned} & \boxed{ \text{Cov}(X,Y) = r\sigma_a^2 + u\sigma_d^2 } & \boxed{b = (r-u)h^2 + uH^2} \\ & r = 2F_{XY} \\ & u = F_{AC}F_{BD} + F_{AD}F_{BC} \end{aligned} \qquad \begin{matrix} A & B & C & D \\ X & X & Y \end{matrix}$$

Coefficient of coancestry for two individuals \I

$$F_{XY} = F_I = P(IBD \text{ genes of hypothetical offspring } I)$$

Ex 13: full siblings

Two genes in I are IBD if they both come

- 1. from the same grandparent
- 2. from the same chromosome of that grandparent

$$F_{XY} = 0.5 \cdot 0.5 = 0.25$$

 $r = 2 \cdot 0.25 = 0.5$
 $u = F_{AA}F_{BB} + F_{AB}F_{BA} = 0.5 \cdot 0.5 + 0 \cdot 0 = 0.25$

Covariance and slope

$$Cov(X, Y) = \frac{\sigma_a^2}{2} + \frac{\sigma_d^2}{4}, b = \frac{h^2}{4} + \frac{H^2}{4}$$

Literature:

- 1. D.L.Hartl, A.G.Clarc. Principle of population genetics. Sinauer Associates, 2007.
- 2. R.Nielson, M. Statkin. An introduction to population genetics: theory and applications, Sinauer Associates. 2013.